سایت شخصی صادق سلمانی

ولتست، بهینه‌سازی تولید و عملکرد چاه، یادگیری ماشین، پایتون، چاه‌های هوشمند، تحلیل داده، فرازآوری مصنوعی

سایت شخصی صادق سلمانی

ولتست، بهینه‌سازی تولید و عملکرد چاه، یادگیری ماشین، پایتون، چاه‌های هوشمند، تحلیل داده، فرازآوری مصنوعی

سایت شخصی صادق سلمانی

مطالبی که در این سایت نوشته می‌شود به منزله تخصص من در آن‌ها نمی‌باشد، بلکه صرفاً آغازی است در مسیری طولانی برای یادگیری بهتر و عمیق‌تر.

آخرین نظرات

۱ مطلب با موضوع «ریاضیات :: آمار» ثبت شده است

یکی از موضوعات مهم ریاضیات و آمار که کاربرد زیادی در رشته‌های مهندسی دارد، مبحث برازش منحنی (Curve Fitting) می‌باشد. 

هدف ما در برازش منحنی آن است که بهترین خط یا منحنی ممکن را از داده‌های موجود عبور دهیم. برای آنکه متوجه شویم که بهترین چندجمله‌ای یا منحنی ممکن را انتخاب کرده‌ایم، باید مجموع مربعات باقمانده‌ها حداقل باشد:


.The most common choice is to minimize the sum of squared residuals


معرفی چند تابع:

1- z = polyfit (x, y, n) 

این تابع، مقادیر x داده و مقادیر y داده‌ها را دریافت می‌کند و سپس یک منحنی درجه n ام از داده‌ها عبور می‌دهد به نحوی که بهترین انطباق ممکن را داشته باشد (حداقل مربعات). 

2- p = poly1d (z)

یک تابع چند جمله‌ای از ضرایب می‌سازد.



بررسی یک مثال از مبحث برازش منحنی:

from numpy import *

x = array ([0.0 , 1.0 , 2.0 , 3.0 , 4.0 , 5.0])

y = array ([0.0 , 0.8 , 0.9 , 0.1 , -0.8 , -1.0])

z = polyfit (x, y, 3)

p = poly1d (z)

xs = [ 0.1 * i for i in range (50)]

ys = [p ( x ) for x in xs]


from pylab import *

plot (x, y, 'o', label='data')

plot (xs, ys, label='fitted curve')

ylabel ('y')

xlabel ('x')

show ()


۰ نظر ۰۴ شهریور ۹۶ ، ۰۸:۳۶
صادق سلمانی